Nuclear Physics at GSI/FAIR (Facility for Antiproton and Ion Research)

The GSI/FAIR facility

Strengths of GSI/FAIR

- •Only facility world-wide able to provide a ²³⁸U²⁸⁺ beam at 1.5 A GeV with ~10¹¹ pps
- •World-record intensities for radioactive beams of fully stripped ions up to the heaviest masses near U
- •Large variety of energies (stopped, A MeV, >1 A GeV)
- •High-quality radioactive beams (beam cooling at rings), unrivalled experience
- •State of the art detection systems are or will be available

Experiments at GSI/FAIR

•FAIR-phaseO is running, current experiments benefit from the upgrade of UNILAC and SIS-18, and from CRYRING

•First experiments using the Super-FRS expected towards the end of 2025

•France is one of the 10 share-holders of FAIR and enables its scientific community the access to FAIR

Nuclear-physics projects at GSI/FAIR coordinated by IN2P3 scientists (2020-2024)

→ For AGATA@FAIR, see talk by A. Lopez-Martens

→Ideas for experiments with GRIT@FAIR, see talk by D. Baumel

Evolution of pairing correlations towards the neutron dripline from di-neutron and tetra-neutron correlations O. Sorlin, GANIL

Pairing correlations towards the neutron dripline

Future studies of 2n and 4n correlations in atomic nuclei at FAIR/GSI

Program:

Use of quasi-free proton knockout mechanism to promote 1n, 2n or 4n in the continuum

Study of 2n or 4n correlations as a function of
 nuclear structure and the proximity of the drip
 1p line

-> Evolution of nuclear superfluidity

Spectroscopy of drip-line nuclei with excellent energy resolution -> shell evolution

AND Means:

Study of all steps of the reaction with full kinematics for ions and neutrons

Very good (neutron) energy resolution (NEULAND), Highest efficiency worldwide

Good γ energy resolution and efficiency (CALIFA)

Two-proton radioactivity J. Govinazzo, CENBG

2-proton radioactivity

- pairing
- drip-line and masses
- tunnel effect
- nuclear structure

- predicted in the 60's indirect evidence in the 2000's observed cases: ⁴⁵Fe (GANIL, GSI), ⁴⁸Ni (GANIL,NSCL), ⁵⁴Zn (GANIL), ⁶⁷Kr (RIKEN)
- correlations (tracking exp., TPC): ⁴⁵Fe [+ poor data on ⁵⁴Zn]

difficult theoretical interpretation

- combine decay dynamics & nuclear structure
- new calculations (deformation) → Gamow coupled channels

need for various cases

orbital configurations / deformation

CS-IN2P3 – june 2019

GSI / FAIR – 2-proton radioactivity

2-proton radioactivity @ GSI/FAIR

Nuclear magnetic moments of isomeric states R. Lozeva, CSNSM

gSPEC@FAIR Scientific motivation

Unknown g factors for excited isomeric states : unknown configuration

- g factor : the dimensionless magnetic moment, M1 operator
- measure of the valence nucleon configuration
- single-particle excitations, orbital evolution, development of collectivity & deformation

HI 240, 55 (19) and references therein

Nature 399, 35 (99)

7/2-

gSPEC@FAIR

Experimental method

Well established!

Spin (J) precession in Field (B)

Main experimental SETUP

Magnet + HpGe detectors + ancillary (x,y) detectors for high B + host => <u>R&D needed!</u>

Nuclear fission, extreme deformation

High-precission decay-probability measurements at CRYRING B. Jurado, CENBG

The interest of measuring decay probabilities induced by transfer or inelastic scattering reactions

Decay probabilities depend on: Low-lying level structure, fission barriers particle transmission coefficients, level densities, γ-ray strength functions, ... Model calculations for these quantities can completely diverge if no data are available!!

Transfer or inelastic scattering reactions in inverse kinematics make possible:
Systematic studies with different reactions and in different regions
Simultaneous measurement of all probabilities to completely constrain model calculations

Significant improvement of model predictions of n-induced crosssections far from stability needed for e.g. understanding the origin of the elements in nuclear astrophysics!

Decay-probability measurements in inverse kinematics

Required E* resolution ~ few 100 keV! Target contaminants and target windows have to be avoided!

High-precision decay-probability measurements at CRYRING

High-precision nuclear fission studies with SOFIA L. Audouin, IPNO

The big puzzle of fission fragment yields

- Asymmetric fission in the U-Pu region
 Explained (recently!) by deformed (octupole) shell effects (Z~54)
 Scamps & Simenel, Nature 564 (2018) 382
- •Transition from asymmetric to symmetric fission in the Ra-Th region
- •New asymmetric region around 180Hg!
- •Lack of high-precision data in trans-uranium region
- •Completely unexplored region of neutron-rich pre-actinides

SOFIA has contributed and will significantly contribute to understand the complexity of fission-fragment yields!

SOFIA@GSI/FAIR : a unique tool for fission studies

E. Pellereau et al. Phys. Rev. C 95 (2017) 054603

Strengths :

- Unique range of secondary beams (ms isotopes)
- Excellent selection and definition of the secondary beam (FRS)
- High fission efficiency due to extreme forward-focusing + large GLAD acceptance
- Identification (A, Z) of both fission fragments (ΔΕ-Βρ-ΤοF technique)
- Unprecedented Z resolution and excellent precision in A (tailored detectors + high kinetic energy)
- Event-by-event determination of the emitted neutron number
- Precise total kinetic energy measurement

Experiment accepted to explore the 180Hg region in 2020!

High-resolution Laser spectroscopy of super-heavy nuclei N. Lecesne, GANIL

High resolution laser spectroscopy of super heavy nuclei

Resonant Ionisation Laser Spectroscopy

- Isotope shifts: Change in the mean-square charge radii between the two isotopes
- Hyperfine structure:

Nuclear spins and moments Model independent!

Laser spectroscopy of super heavy nuclei at SHIP

Very challenging!

Very low production cross sections and lack of knowledge on optical transitions

RADRIS (Radiation Detected Resonant Ionization Spectroscopy)

Perspectives: New set-up, in-gas-jet resonance ionisation spectroscopy

\Rightarrow Improved resolution

- ⇒Experiments foreseen to study more exotic No isotopes and Lr (Z=103)
- \Rightarrow New laser system 10kHz required
- \Rightarrow Preparatory phase for S³LEB at SPIRAL2

Conclusions

•Six projects from IN2P3 researchers to be conducted between 2020-2024, within FAIR-Phase0

•GSI/FAIR is currently the only facility where the proposed experiments can be performed

•Most of the projects open bright perspectives for future measurements beyond FAIR Phase-0

Back-up slides FAIR

Uniqueness of the NUSTAR Day-1 program

- Understanding the 3rd r-process peak by means of comprehensive measurements of lifetimes, masses, neutron branching ratios, dipole strength, and the level structure along the N=126 isotones;
- Equation of State (EoS) of asymmetric nuclear matter by measuring the dipole polarizability and neutron-skin thicknesses of heavy neutron-rich isotopes (in combination with the results of the first highlight);
- Exotics: Hypernuclei with large N/Z asymmetry and nucleon excitations in nuclei

Competitiveness of NUSTAR

- RIB energies and Super-FRS performance
 - Competitive luminosity and highest purity, in particular for heavy isotopes (Z>70)
 - New excitation modes accessible ("hypernuclei")
 - High-resolution spectrometer mode (at 20 Tm)
- Storage ring experiments
 - World-wide unique range from keV to GeV
 - Largely unrivalled experience
- New and improved instrumentation, e.g.,
 - R3B dipole magnet
 - Cryogenic Stopping Cell for low-energy beams

The road towards FAIR MSV

Facility			U beam in productio	Luminosity [fb ⁻¹]	
Today at GSI with	RS (Ph	ase 0)	12x10 ⁹	~0,1	
Super-FRS with up	graded	SIS18	5x10 ⁹	2	
Commissioning ph	ase <mark>SIS</mark>	100	2x10 ¹⁰	5	
Full final intensity	with <mark>SI</mark>	S100	4x10 ¹¹		100
 Phase 0 preparation 0.1 fb⁻¹ (near) stability 	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Day-1 discovery 2-5 fb ⁻¹ exotic	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	Full MSV detailed studies 100 fb ⁻¹ very exotic nucle	i

GSI/FAIR expected intensities

			10day= 2015					
				UNILAC today	FAIR	2017		
			Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺		
	SIS-18	SIS-100	Current (mA)	5/1	15	3		
Reference primary ion	U ²⁸⁺	U²⁸⁺ / U⁹²⁺	Emittance, 4σ (h, mm mrad)	7/7	5	7		
Reference energy	0.2	1.5 / 10 GeV/u	Momentum spread (2σ)	1E-3/1E-3	5 E- 4	5 E- 4		
lons per cycle	1.2E11	4E11 / 1E10		SIS-18 todav	FAIR design	2017		
cycle rate (Hz)	2.7	0.5 / 0.1						
ntensity (ions/s) 3E11	3E11	2E11 / 1E9	Reference primary ion	U ²⁸⁺ /U ⁷³⁺	U ²⁸⁺	U ⁷³⁺		
			Reference energy GeV/u	0.2/1	0.2	1		
			lons per cycle	4E10/4E9	1.5E11	2E10		
			cycle rate (Hz)	0.5 Hz	2.7 Hz	2 Hz		
			Long. dilution	> 2	1.5	2		

Construction of the SIS100 Tunels May 2019

Back-up slides O. Sorlin

Physics case: Signs of superfluidity and their evolution towards the drip line

Pairing correlations play essential role in atomic nuclei and in neutron stars (NS)

- oscillations in S_n values
- g.s. spin 0⁺ of even-even nuclei
- Moment of inertia << rigid value
- Enhanced pair transfer
- cooling of NS, glitches

Evolution of pairing scheme towards drip-line, from BCS to BEC ? (e.g. Hagino et al. PRL99 (200

Few information available -> Study of n-n correlations in various systems -> Evolution with binding energy ? -> Determine average distance r_{nn} between neutrons -> Amount of sequential / direct decay 1 2 3 4 5 6 r (fm) 1 2 3 4 5 6 r (fm)

Possible existence of a narrow 4n resonance (e.g. Marquès, Shimura) 4n correlations could play a role in describing the nuclear superfluidity -> Role not yet revealed or studied in atomic nuclei

Previous work: Experimental method to study neutron correlations (in ¹⁸

 ${}^{18}C \approx {}^{14}C$ core +4n valence neutrons

- High energy proton knock-out reaction (p,2p) at GSI (400A.MeV) -> quasi-free mechanisi
- Deeply bound proton orbitals -> energy piston to promote neutrons into the continuum
- Sudden approximation -> neutron correlations weakly affected by proton knock-out
- Deduce information on the n-n correlations from their observed decay patterns
Results: Study of n-n correlations in ¹⁸C and ²⁰O at R3B

Results: Dalitz plots and n-n correlations in ¹⁸C and ²⁰O (core + 4n syste

A. Revel et al Phys. Rev. Lett. 112 (2018)

Summary of results from the previous experiment

Two-neutron correlations in the ¹⁸C, ²⁰O isotones (A. Revel et al. Phys. Rev. Lett . 120, 152504 (2018)

Study of pn interaction at the drip line

As one experiment produces a cocktail of nuclei and many reactions, it leads to several PhD thesis (3 from IN2P3 on different topics, in addition to other PHD from the collaboration)

At least two more results to be published on mirror symmetry in ¹⁵C - ¹⁵O and the influence of the coupling to continuum in ¹⁴B

Study of 2n and 4n correlations in atomic nuclei at FAIR/GSI

Planned studies 2020 (core+4n, haloes, drip-line)

Program:

Use of quasi-free proton knockout mechanism to promote 1n, 2n or 4n in the continuum

Spectroscopy of drip-line nuclei with excellent energy resolution -> shell evolution

Study of 2n or 4n correlations as a function of nuclear structure and the proximity of the drip line

-> Evolution of nuclear superfluidity

Means:

Study of all step of the reaction with full kinema for ions and neutrons

Very good (neutron) energy resolution (NEULAN Highest efficiency worldwide

Good γ energy resolution and efficiency (CALIFA)

Туре	2020	2021	2022	2023	2024	total
NeuLAND double planes or Califa detectors	30 (1)	30	30	30	30	150 k€
Travel (k€)	3 ⁽²⁾ +1.5 ⁽³⁾	2.5 ⁽³⁺⁴⁾	2.5 ⁽³⁺⁴⁾	2.5 ⁽³⁺⁴⁾	2.5 ⁽²⁾	14.5 k€
PhD (k€)		40	40	40		120 k€
Senior with student	1	1	1	1	1	5 k€
Total (k€)	35.5	73.5	73.5	73.5	33.5	289.5 k€

⁽¹⁾ Yearly contribution to buy 1 double plane of NeuLAND or two ring of CALIFA array in 5 years.

⁽²⁾ For running our accepted experiment supposed to be scheduled in 2020.

⁽³⁾ For 2 yearly R3B collaborations (6 people in total)

⁽⁴⁾ For the participation of the IN2P3 researchers to other experiments of the collaboration

Human resources	2020	2021	2022	2023	2024	total
Researchers (2 GANIL+ 3 IPNO + 1 LPC)	0.8	0.2	0.2	0.8	0.2	2.2
spokesperson	0.3	0.2	0.2	0.3	0.2	1.2
PhD	0.9	0.9	0.9	0.9	0.9	4.5
Total	2	1.3	1.3	2	1.3	8.9

Estimated counted time are for running experiments, attending R3B meeting, participating to tests or other experimental programs. It is assumed that another proposal will be deposited in the period (2021), with another experiment running in 2023. As for student's work, the time includes data analysis as well.

Timeline and scientific production

2011: Participation to experimental campaign with Aladin/LAND

2016: Study ²⁶F and probe the strength of the protonneutron interaction, 1 publication

2018: Neutron pairing in ¹⁸C and ²⁰O, 1 publication (PRL) **2019:** The multiple facets of the ¹²Be nucleus, PhD thesis, work in progress

2017: Proposal approved by the GSI PAC to investigate several nuclei close to the drip line

2020: Expected schedule of the experiment

2021-...: Participation to experiments of the collaboration, new proposals to be presented.

SWOT analysis

SCIENCE / HUMAN RESOURCES

strength	weakness
Full kinemtics of the reaction, The best existing neutron detector array	Not yet involved in technical development and tests. Modest knowhow on detectors /
Many students in different countries can share analysis	electronics / mechanics
Large european community involved in R3B	
French phy in the prog involved in	sicists involved ram already other facilities
Big investment from CEA (magnet + cryogenic target) be carried out with this beam line (incl. Fission)	Unequal engagment in terms of budget and physicists ifrom France as compared to ther countries
Cross fertilize exchanges between different communities	Competition with RIKEN: -> need to better define the contours of each
Super FRS in 2023	scientific programs.
opportunity	threat

2-proton radioactivity @ GSI/FAIR

Additional slides J. Giovinazzo

CS-IN2P3 – june 2019

GSI / FAIR – 2-proton radioactivity

2-proton radioactivity – main exp. results

1996	45 Fe observation
2000	48 Ni observation
2002	2P radioactivity (indirect) of ⁴⁵ Fe
2002	2P radioactivity (indirect) of ⁴⁵ Fe
2005	observation and 2P (indirect) of ⁵⁴ Zn
2007	direct obs. of ⁴⁵ Fe 2P decay
2007	angular correl. in ⁴⁵ Fe 2P decay
2011	direct obs. of ⁵⁴ Zn 2P decay
2011	direct obs. of ⁴⁸ Ni 2P decay
2016	67Kr observation
2016	2P radioactivity (indirect) of 67Kr

PRL 77 , B. Blank <i>et al.</i>
PRL 84 , B. Blank <i>et al.</i>
PRL 89, J. Giovinazzo et al.
EPJA 14, M. Pfützner et al.
PRL 94 , B. Blank <i>et al.</i>
PRL 99, J. Giovinazzo et al.
PRL 99, K. Miernik et al.
PRL 107, P. Ascher et al.
PRC 83, M. Pomorski et al.
PRC 93 , B. Blank <i>et al.</i>
PRL 117 , T. Goigoux <i>et al.</i>

GSI

GSI

GANIL GANIL

GANIL GANIL

NSCL GANIL NSCL RIKEN RIKEN

> IN2P3 / CENBG not involved IN2P3 / CENBG involved IN2P3 / CENBG leading

	2020	2021	2022	2023	2024	2025+	total
Researchers							
- CENBG	0.1	0.1	0.2	0.4	0.8	0.8	2.4
- ACTAR TPC				0.1	0.2	0.3	0.6
- other IN2P3					0.2	0.2	0.4
Engineers							
- CENBG				0.1	0.1	0.1	0.2
- ACTAR TPC				0.1	0.2	0.2	0.5
PhD (if any)					0.9	0.9	2.7
						(+2026)	
Collab. from abroad (incl.					0.3	0.5	0.8
ACTAR TPC)							
Total	0.1	0.1	0.2	0.7	2.7	3.8	7.6

type	2020	202	202	202	2024	•••	total
		1	2	3			
equipme					10 k€		10 k€
nt					(ACTAR TPC coupling)		
travel	1	1	2	2	15 k€ ⁽²⁾	15 k€ ⁽²	36 k€ (up to
	k € ⁽¹⁾	k€ ⁽¹⁾	k€ ⁽¹⁾	k€ ⁽¹⁾) / exp	2025)
PhD					40 k€ ⁽³⁾ × 3	40	120 k€
					years	k € ⁽³⁾	
total	1 k€	1 k€	2 k€	2 k€	65 k€	•••	166 k€

- (1) for meetings with the NUSTAR collaboration, proposals preparation and PAC meeting.
- •(2) for the participation of the IN2P3 researchers to the experiments: the year is an indication, but cannot be given precisely.
- •(3) a first PhD is requested for the participation and analysis of the first experiments, but another PhD will be needed for the ACTAR TPC experiments.

2-proton radioactivity @ GSI/FAIR – SWOT analysis

	positive	negative
internal	 strengths known exp. techniques standard impl./decay technique ACTAR TPC tested very limited investment strong visibility of IN2P3 	weaknesses manpower for analysis (PhD funding)
external	opportunitiesunprecedented prod. ratesjoin NUSTAR collaboration	 threats beam time / accepted exp. beam availability

Backup gSPEC

gSPEC@FAIR Scientific motivation

Unknown g factors for excited isomeric states : unknown configuration

- g factor : the dimensionless magnetic moment, M1 operator
- measure of the valence nucleon configuration
- single-particle excitations, orbital evolution, development of collectivity and deformation

gSPEC *

Budget gSPEC@FAIR

Type of budget	2020	2021	2022	2023	2024	Total
Equipment	120 k€ Detectors (ancillary) + Design magnet	780 k€ magnet	50 k€ Detector + Magnet manipulators	-	-	950 k€
Running costs	10 k€	10 k€	10 k€	10 k€	10 k€	50 k€
Travel	15 k€	15 k€	15 k€	20 k€	10 k€	75 k€
Personnel	PostDoc (75 k€)	PostDoc (75 k€)	PostDoc (75 k€) PhD (40 k€)	PhD(40 k€)	PhD(40 k€)	345 k€
Total	220 k€	880 k€	190 k€	70 k€	60 k€	1420 k€

Equipment : ~1 M€ (demanded contribution)

• Outside this demand :

- HpGe detector R&D and production, electronics, DAQ
- Beam tracking FRS/SuperFRS, electronics, DAQ
- Ancillary gSPEC backend electronics & DAQ
- All supports (table, magnet, HpGe detectors, ancillary detectors)
- All hosts + degraders (for gSPEC)
- Possible 2nd setup chamber+cooling (for gSPEC)
- Possible another encapsulation HpGe (R&D+production for gSPEC)

Timeline gSPEC@FAIR

SWOT gSPEC@FAIR

Strengths	Weaknesses			
 Develop, build and exploit a state-of-the-art spectrometer for g factors Technical expertise in superconducting magnets, HPGe detectors, electronics and DAQ Expertise in hyperfine interactions International effort Precision spectroscopy of exotic nuclei Discovery potential 	 International effort Few experts 			
Opportunities	Threats			
 Involvement of a new company Design Study and possible collaboration with University- based magnet Design Study and production New R&D on particle detectors in high magnetic field New encapsulation HpGe in collaboration with partners Exploitation of new techniques Subsequent Q experimental campaigns 	 Lack of funding and Human Resources Little beam time in the host sites may require relocation 			

Back-up slides B. Jurado

Representative results 3He+238U→4He+237U ⇔ n+236U→237U •_0.4 Ρ 238U(3He,4He) 0.35 n-induced JEFF n-induced JENDL 0.3 n-induced ENDF 0.8 0.25 0.2 0.6 0.15 238U(3He,4He) 0.4 **0.1**F n-induced JEFF n-induced JENDL 0.2 0.05 n-induced ENDF S, 8.5 8 9 4.6 4.8 5 5.2 5.45.65.8 6 6.2 E* 237U [MeV] E*(237U) (MeV)

Good agreement for fission probabilities but strong disagreement for γ -emission probabilities.

Not understood, need systematic studies involving nuclei with different nuclear structure and different reactions to define how to use surrogate reactions when no neutron data are exists.

Setup for the measurement of fission and gamma-emission probabilities in direct kinematics Fission Gamma detectors Detector (scintillators) Solar cells Fission Fragment 3He Bean (NNN) N beamlike-decay 7 sing 238U Si Telescope Limits: **Beam-lik** Unavailability of (radioactive targets residues samples) Target contaminants and target support P_{γ} : discrimination of γ 's from fission fragments, very low detection efficiency • P_n: measurement of low-energy neutrons and neutron efficiency

Detailed Geant 4 simulations: excitation-energy resolution

Detailed Geant 4 simulations: separation of beam-like residues

Timeline and scientific production

- **2017:** Start of feasibility studies, presentation of the project at the CENBG Scientific Council with the conclusion: *"The scientific council strongly supports this project and their funding request."*
- **2018:** Detailed feasibility studies at GSI within EMMI visiting professor-ship of B. Jurado
- **2019:** Project awarded with a Marie Curie post-doc fellowship and an international PhD of the CNRS, applications sent to French/German funding agencies ANR-DFG and to the ERC (Advanced Grant).
- **2020-2022:** Submission of experiment proposal to the GSI/FAIR PAC and construction of set-up
- **2023-2024:** Realization of first experiment, data analysis and publication of results
- We have presented this project in more than 15 workshops and are preparing an article on the use of solar cells, many articles are expected during the set-up development and after the experiment.

Budget

Type of budget	2020	2021	2022	2023	2024	Total
Equipment	380k€ detectors and electronics	420k€ reaction chambers and manipulators	200k€ beam monitors			1030 k€
Travel	10 k€	10 k€	10 k€	20 k€	10 k€	60 k€
Personnel			PhD (40 k€)	PhD(40 k€)	PhD(40 k€)	120 k€
Total	390 k€	430 k€	250 k€	60 k€	50 k€	1180 k€

Important: We have applied for funding to the ANR-DFG and ERC in 2019. In case any of these applications is successful, our requested resources to the IN2P3 will be drastically reduced.

Human resources

	2020 etp	2021 etp	2022 etp	2023 etp	2024 etp	Total etp
International PhD CNRS CENBG	1	1	1			3
Marie Curie postdoc A. Henriques CENBG	1	0.6				1.6
Permanent IN2P3 researchers CENBG: B. Jurado, L. Mathieu, I. Tsekhanovich, CR IPNO: L. Audouin	1.1	1.25	1.25	1.5	0.7	5.8
Mechanical Engineer T. Chiron CENBG	0.5	0.5	0.5			1.5
Electronics Engineer J. Pibernat CENBG	0.6	0.6	0.6	0.5		2.3
Instrumentation Engineers B. Thomas, P. Alfaurt CENBG	0.3	0.3	0.4	0.3		1.3
Total ETP	4.5	4.25	3.75	2.3	0.7	15.5

High-precision decay-probability measurements at CRYRING

	positive	negative				
internal	 Strengths First time ever simultaneous measurement of fission, gamma- and neutron-emission probabilities with very good E* resolution High precision in the probabilities due to the absence of target contaminants/windows and the unambiguous separation of the reaction products, which can be detected with very large efficiencies Cutting-edge technology Synergy with atomic physics methods 	Weaknesses • The detection system has to be compatible with the ultra-high vacuum (UHV) of the ring. This is challenging and we are on the way to acquire the required expertise on UHV technology				
external	 Opportunities Our developments are beneficial for proton and e- capture cross-section measurements of heavy nuclei at CRYRING Pioneering work: the study of nuclear reactions at rings is only possible since a few years Our project can be the seed for a future high-level program on nuclear structure and astrophysics with transfer or inelastic scattering reactions at rings Our solar-cell studies can be the seed for developing new monitoring methods in RIB facilities 	 Threats Funding necessary to build the setup not yet available Beam availability 				

Back-up slides L. Audouin

Timeline

2012: First campaign to study the U-Th region (SOFIA-1)

2014: Second campaign focussed on ²³⁶U (SOFIA-2)

2020: Construction of a MWPC, revamp of the readout of all MWPC, SOFIA-3 experiment (dedicated to the study of the transition toward asymmetric fission in very neutron-deficient nuclei). Data analysis.

2021: Data analysis

2022: Preparation of the SOFIA-4 experiment (dedicated to the influence of excitation energy on the fission yields for a range of nuclei, possibly the Th chain)

2023: SOFIA-4 experiment and data analysis.

2024: Data analysis and possibly development of the Pu beam

Human resources

	2020 (etp)	2021 (etp)	2022 (etp)	2023 (etp)	2024 (etp)	Total (etp)
PhD (expected from Graduate School of Saclay)		1	1	1		3
Post-doc (CNRS)			1	1		2
Permanent researchers : L. Audouin (IPNO) B. Jurado (CENBG)	0.6	0.5	0.5	0.5	0.5	2.6
Instrumentation engineers : J. Bettane, L. Vatrinet (IPNO)	0.50		1			1.5
Electronics Engineer : T. N. Trung (IPNO)	0.20					0.2
Instrumentation technicians : M. Imre, L. Seminor, B. Geoffroy (IPNO)	1		2			3
Total	2.3	1.5	5.5	2	0.5	12.3

Budget

Type of budget	2020	2021	2022	2023	2024	Total
Equipme nt	65 k€ (detectors and electronics)		20 k€ (mechanic s)			85 k€
Travel	8 k€	2 k€	4 k€	15 k€	10 k€	39 k€
Personnel			Post-doc (1) (50 k€)	Post-doc (1) (50 k€)		100 k€
Total	73 k€ (2)	2 k€	74 k€	65 k€	10.€	224k€

SOFIA: perspectives and risk/opportunity assessment

- Coupling to the CALIFA array:
 -> (p,2pf) measurement: study the influence of excitation energy on yields
- Coupling to the NeuLAND neutron wall:
 Neutron assignation for in-depth test of the energy partition
- ²⁴²Pu primary beam
- -> High-precision nuclear data for energy application (yields of ²⁴⁰Pu* !)
- (long-term) Super-FRS beams:
- -> New range of exotics systems, including neutron-rich nuclei (astrophysical interest)

- Successful first experiments
- Cutting-edge technologies
- IN2P3 contribution: specific and visible
- Short, mid and long-term program
- Key position of CEA-DAM in the collaboration
- Harsh competition for beam time
- Lack of physicist manpower on IN2P3 side

Back-up slides N. Lecesne

Timeline

- **2017:** Proposals accepted at the GSI G-PAC for RADRIS and in-gas-jet laser spectroscopy experiments (U313, U314)
- **2018:** Construction of the new detection set-up prototype for high-resolution spectroscopy
- **2019:** Realization of RADRIS studies at SHIP of GSI/FAIR for ²⁵⁵No and first tests for in-gas-jet laser spectroscopy experiments (U313, U314)
- **2019-2022:** Realization of the in-gas-jet laser spectroscopy experiments with an improved setup (high repetition rate narrow bandwidth laser system) **2019-2021:** Final construction of the S³ LEB instrumentation and off-line
- commissioning at LPC Caen
- **2022:** Mounting of LEB instrumentation at S³, commission and first test in-beam **2023:** Start of Day-1 experimental program at S³

Budget

Type of budget	2020	2021	2022	2023	2024	Total
Equipment	100 k€ pump laser 10kHz	15 k€ Laser consumable	10 k€ Laser consumabl e			125 k€
Travel & meetings (+accord IN2P3)	2 k€	2 k€	2 k€	2 k€	2 k€	10 k€
Personnel	PhD (40 k€)	PhD (40 k€)	PhD (40 k€)			120 k€
Total	142 k€	57 k€	52 k€	2 k€	2 k€	255 k€

Human resources

	2020	2021	2022	2023	2024	Total
	etp	etp	etp	etp	etp	etp
Permanent staff GANIL: N. Lecesne, H. Savajols, D. Ackermann, J. Piot, C. Stodel IPNO: E. Minaya Irfu/DPhN : M. Vandebrouck, B. Sulignano	2	2	2	2	2	10
High-resolution Laser spectroscopy of super-heavy nuclei

	positive	negative				
internal	 Strengths Unique set-up and knowhow High scientific impact and discovery potential Synergies: atomic physics methods and nuclear structure studies Strong visibility of IN2P3 	 Weaknesses Not yet strongly involved in technical development and tests (Investment budget) Manpower for supporting experiment and for analysis (PhD funding) 				
external	 opportunities Complementary access to basic features of the heaviest nuclei Set-up the course for future program at S3 Low Energy Branch Strengthen IN2P3-NUSTAR collaboration 	 threats Beam time / accepted exp. Beam availability 				

Atomic energy level calculations: nobelium (Z=102)

Need to scan 5000 cm⁻¹ ~ 150,000 GHz (FWHM (BB dye laser) ~ 15GHz) Each cycle ~ 1 minute... expect ~2 resonant counts

In-Cell vs In-Jet Spectroscopy of ²¹⁵Ac

Tables all projects

Total Budget

Type of budget	2020	2021	2022	2023	2024	Total
Equipment	695 k€	1245 k€	310 k€	30 k€	40 k€	2320 k€
Travel+runnin g costs	51.5 k€	43.5 k€	46.5 k€	72.5 k€	60.5 k€	274.5 k€
Personnel (PhD +Posdocs)	115 k€	155 k€	285 k€	170 k€	120 k€	845 k€
Total	861.5 k€	1443.5 k€	641.5 k€	272.5 k€	220.5 k€	3439.5 k€

Total available human resources

	2020 etp	2021 etp	2022 etp	2023 etp	2024 etp	Total etp
PhD	1.4	1.3	1			3.7
Postdoc (Marie Curie fellow)	1	0.6				1.6
Permanentresearchers(IN2P3 and University)	6.5	6.05	6.35	7.6	6.5	33
Permanent Engineers (IN2P3)	3.8	2.2	5.3	1.6	0.8	13.7
Total ETP	12.7	10.15	12.65	9.2	7.3	52

Overview of French projects (Limits of stability, super-heavy nuclei)

Evolution of shells, onset of deformation and collectivity with isomers

