

EMIR&A

French national network of accelerators for irradiation and analysis of molecules and materials

(http://emir.in2p3.fr)

Nathalie Moncoffre

EMIR&A, CS IN2P3 - February 25, 2020

About EMIR/EMIR&A

Research Federation created in January 2014 (FR 3618) Research Infrastructure Annual budget: 10 – 12 k€

Mainly attached to INP Secondary attachment Institutes: INC and IN2P3

Until August 2019 : Director Serge Bouffard (CIMAP, Caen) New Head: Nathalie Moncoffre (IP2I, Lyon)

EMIR: A network of irradiation platforms for the study of materials

Until 2019 :

Research topics focused on irradiation studies in a wide range

of materials

Fundamental research \implies applications including those for energy.

How to extend the scope of EMIR to other accelerators and other scientific topics: relevance of opening EMIR to new facilities?

The main objectives:

Federate the scientific community around accelerators

Make it more visible nationally and internationally.

To prepare the future of EMIR :

Working Group : (GrAcc) Group on Accelerators for Irradiation and Analysis

M. France Barthe (CEMHTI, Orléans) Serge Bouffard (CIMAP, Caen) Denis Jalabert (INAC, CEA, Grenoble) Isabelle Monnet (CIMAP, Caen) Nathalie Moncoffre (IP2I, Lyon) Ian Vickridge (INSP, Paris) Pascal Yvon (CEA, Saclay) Sophie Le Caër (CNRS, CEA Saclay)

Which research around accelerators around 3 axes :

- Irradiation of materials
- Radiolysis
- Ion beam analysis

Presentation of this project to the CNRS institutes (INP, INC, INP3) in June 2019

EMIR evolves in two poles

Pole 1: Irradiation of materials and molecules (including radiolysis) Pole 2: Studies using Ion Beam Analysis (IBA)

EMIR&A

National Federation of Accelerators for the Irradiation and Analysis of Molecules and Materials

EMIR&A platforms

- CEMHTI Orléans, UPR CNRS/INC, Université d'Orléans Cyclotron 45 MV, Pelletron 3 MV
- CIMAP -Caen, UMR CEA/DRF/IRAMIS, CNRS/INP, ENSICAEN, Univ. Caen-Normandie SME, IRRSUD
- IJCLab Orsay UMR CNRS/IN2P3, Université Paris-Saclay
- JANNuS Orsay, IRMA 190 keV implanter, ARAMIS, Tandem-VdG 2 MV
- LSI Palaiseau, UMR CEA/DRF/IRAMIS, CNRS/INP, École Polytechnique SIRIUS, 2.5 MeV electron accelerator
- SRMP CEA Paris Saclay
 - JANNuS Saclay, EPIMETHEE, JAPET, PANDORE
- **SRMA CEA Paris Saclay**
 - HVTEM (1.2 MeV electrons)

INSP - Paris-Sorbonne University SAFIR, 2.5 MV VdG accelerator LCP - Orsay Université Paris-Saclay ELYSE, electron accelerator

Platforms	Accelerators	Beams	Commissioning/Age(years)	specifities
CEMHTI/INC	Cyclotron	p, d, He 10-45 MeV	1976 44	External beam/radiolysis
	Pelletron 3 MV	p, d, He, 0.5 - 3 MeV	2016 4	RBS, NRA, ERDA
IJCLab/IN2P3 JANNuS-Orsay	IRMA Implanter 190 kV	H – Bi 10 to 570 keV	1979 41	In-situ TEM
	ARAMIS Tandem - VdG 2 MV	H- Bi 0.5 to 11 MeV	1987 33	
CIMAP –GANIL INP	SME	C – U 4.5 to 13 MeV/A	1989 31	X-ray diffractometer High temp. furnace
	IRRSUD	C – U 0.3 to 1 MeV/A	2002 18	
SRMP/CEA JANNuS -Saclay	EPIMETHEE	H – Bi (source ECR) 0. 5 to 50 MeV	2006 14	Triple beam chamber In-situ Raman
	JAPET	H – Bi 0.5 to 18 MeV	2009 11	
	PANDORE	H, D, He 0.5 to 2.5 MeV	2016 4	
SRMA/CEA	HVTEM	Electrons 0.3 to 1.2 MeV	1981 39	
LSI/INP	SIRIUS	Electrons 0.15 to 2.5 MeV	2013 7	
INSP/INP	SAFIR VdG 2,5 MV	P, d, He, C, N, O 100 keV to 2.5 MeV	1968 52	RBS, NRA, ERDA, MEIS
LCP/INC	ELYSE 2.5 MeV	Electrons 3 to 9 MeV	2002 18	Impulsions ps

Large domain Z – Energy Z = 1 -> 92 and 10 keV to GeV

These platforms are very complementary (energy, ions) to study irradiation effects in materials

Objectives of EMIR&A

- Organize access to the facilities
- Structure the network of platforms and create a link between these facilities,
- Organize the welcome of research teams (also internationally) at the facilities.
- Promote their evolution in order to better meet the demands of users and research programs.
- Lead our scientific community
 - Think tank, a place for scientific exchanges
 - Catalyst for collaborations
 - Force to respond to calls for proposals, ANR, European projects,

Increase the visibility of the scientific community

Organisation

Direction

Nathalie Moncoffre, IP2I, Lyon Marie-France Barthe, CEMHTI, Orléans, Isabelle Monnet, CIMAP, Caen

Coordination Committee

Cédric Baumier, IJCLab, Orsay Eymeric Briand, INSP, Paris Céline Cabet, CEA SRMP, Jannus, Saclay Amine Cassimi, CIMAP, Caen Sergey Denisov, LCP, Orsay Aurélie Gentils, IJCLab, Orsay Mehran Mostafavi (LCP, Orsay) Michèle Raynaud, LSI, Palaiseau Thierry Sauvage, CEMHTI, Orléans Ollivier Tissot, CEA SRMA, Saclay Ian Vickridge, INSP, Paris

Scientific Committee

- Serge Bouffard, Caen,
- Krzysztof Bobrowski (Institute of Nuclear Chemistry and Technology, Warsaw, PL)
- Stephen Donnelly (University of Huddersfield, West Yorkshire, GB)
- Denis Jalabert (CEA, Grenoble)
- Katharina Lorenz (Technical University, Lisbonne, P)
- Robin Schaeublin (Centre of Research in Plasma Physics, PSI, Villigen, CH), Président
- Shamashis Sengupta, (IJCLab, Orsay)
- Guy Terwagne (Université de Namur, B)
- Thierry Wiss (JRC, Karlsruhe, D)

Scientific issues

Fundamental research

Irradiation : A unique tool to create controled damage

irradiation

- **Nuclear materials** •
 - Interactions defects-impurities
 - Role of grain boudaries
 - Chemical segregations
 - Irradiation induced-processes (diffusion, corrosion, radiolysis)
 - Evolution of properties /mechanical, magnetic, ...
- Theory simulation
 - Multi-scale modelling
 - Mesoscopic approach
 - Radiolysis effects (solids, interfaces solids/liquids)

Material modelling

Separate effect studies

→ mechanisms

(T, flux, dose)

Control of irradiation parameters

• Solid state physics

Irradiation = tool to understand solid properties

- Intrinsic properties- defects
 - Defect trapping, ...
 - Role of balistic damage/electronic excitation, synergetic effets
 - Defect annealing
 - Defect impact on supraconductivity/ferromagnetism
 - ...
- Material characterization

Irradiation + in-situ characterization Damage evolution (SEM, TEM)

MET Jannus-Orsay (© C. Baumier (CSNSM))

Applications

Nuclear energy (fission, fusion)

- Material ageing: ions to simulate neutrons all kinds of materials in the nuclear fuel cycle
- Damage effects in different energy domains (dE/dx)
- Corrosion
- ...

Electronic

- implantation
- smart-cut process

In situ X-ray diffractometer IRRSUD-GANIL Triple beam chamber JANNuS Saclay

Radiation environment

Robots for nuclear applications, satellites, Space applications

Nanostructuration

Trace formation , nanopores for functionalisation ...

Polymer reticulation

Cables, claddings, ...

Ion beam analysis

- Light element analysis (H, He, C, O)
- Isotopic tracing for corrosion studies,
- Diffusion mechanisms,
-
- Pulsed beams
 - Radiolysis studies
 - Rapid kinetics processes

Experimental hall© INSP

• Importance of *in-situ* characterization tools

EMIR&A – some data

Platforms	Rates	EMIR&A Allocated beam time	
CEMHTI	Free	10 weeks	
CIMAP- GANIL	Free	~60 days	
HVTEM	Free	5 days	
LSI	1500 €/day	50 days	
JANNuS- Orsay	2000€/exp.	5 (+1) weeks	
JANNuS- Saclay	2000€/exp.	5 weeks	
SAFIR	Free	A few weeks	, noit
ELYSE	Free	50 days	

- > The EMIRUM workshop (EMIR User Meeting)
 - allows users to present their results.
 - opportunity for informal and very fruitful exchanges.

The next EMIRUM is planned in January 2021 at LSI, Ecole Polytechnique

Set up a session dedicated to technical aspects / accelerator operation → invite the engineers and technicians of EMIR&A's installations.

IBAF's RASTA (Réseau d'Aides Scientifiques et Techniques des Acélérateurs) network could be extended to EMIR&A.

> To organize thematic schools for students and young researchers

Develop the website <u>http://emir.in2p3.fr</u> Sébastien Grégoire, Cédric Baumier, IJCLab

Frame: Renewal of the research infrastructure

- New platforms ?
- → Improve national and international attractiveness
- → Federate the scientific community around accelerators for the study of materials and molecules
- → Provide the scientific community with unique on line irradiation
- → facilities and instrumentation : original, complementary

Conditions : - opening rate at least of 30 %

- enhanced help to experiments for non-specialists

Equipex+ ?

Structuring equipments for research – PIA3

TEM, DRX line-IJCLab, Baby Pelletron-CEMHTI, VdG-CIMAP, Acc. Compact-INSP

Thank you !

